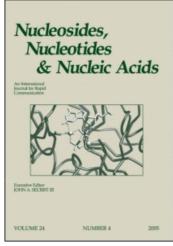
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Nucleosides and Nucleotides. 139. Stereoselective Synthesis of (2'*S*)-2'-*C*-Alkyl-2'-deoxyuridines

Tomoharu Iinoª; Satoshi Shutoª; Akira Matsudaª

^a Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

To cite this Article Iino, Tomoharu , Shuto, Satoshi and Matsuda, Akira(1996) 'Nucleosides and Nucleotides. 139. Stereoselective Synthesis of (2'*S*)-2'-*C*-Alkyl-2'-deoxyuridines', Nucleosides, Nucleotides and Nucleic Acids, 15: 1, 169 — 181

To link to this Article: DOI: 10.1080/07328319608002378 URL: http://dx.doi.org/10.1080/07328319608002378

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES AND NUCLEOTIDES. 139. STEREOSELECTIVE SYNTHESIS OF (2'S)-2'-C-ALKYL-2'-DEOXYURIDINES#,1

Tomoharu IINO, Satoshi SHUTO, and Akira MATSUDA*

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku,

Sapporo 060, Japan

Abstract: A synthetic method for (2'S)-2'-C-alkyl-2'-deoxyuridines (9) has been described. Catalytic hydrogenation of 1-[2-C-alkynyl-2-O-methoxalyl-3,5-O-TIPDS- β -D-arabinopentofuranosyl]uracils (5) gave 1-[2-C-(2-alkyl)-2-O-methoxalyl-3,5-O-TIPDS- β -D-arabino-pentofuranosyl]uracils (4) as a major product, which were then subjected to the radical deoxygenation, affording (2'S)-2'-alkyl-2'-deoxy-3',5'-O-TIPDS-uridines (7) along with a small amount of their 2'R epimers.

Radical deoxygenation of sugar hydroxyls of nucleosides is frequently used for preparation of biologically interesting nucleosides. Such reactions can also be used for the deoxygenation of tertiary hydroxyls in branched nucleosides, which are readily obtained by nucleophilic additions of carbanions to the corresponding ketones.² Alkyl addition reactions to 2'-keto nucleosides using MeMgBr, Me₃Al, or MeLi usually proceed from the α-face of the sugar moiety.^{2,3} The resulting *tert*-alcohol is then converted into the corresponding methoxalyl ester, which is subjected to radical deoxygenation using Bu₃SnH in the presence of 2,2'-azobis(isobutyronitrile) (AIBN), giving highly stereoselectively (2'S)-2'-deoxy-2'-C-methyl derivatives.^{2a,c,e,f} We have designed (2'S)-2'-deoxy-2'-C-methylcytidine (SMDC)^{2a,e} as well as (2'S)-2'-deoxy-2'-C-fluoromethylcytidine (SFDC)^{2g} as antimetabolites, and they showed tumor cell growth inhibitory activity spectra similar to that of 1-β-D-arabinofuranosylcytosine (araC), which is currently used as an antileukemic agent. We also reported that (2'S)-2'-deoxy-2'-C-methyl-5-iodouridine (SMIU)^{2f} showed potent anti-HSV-1 activity *in vitro* without showing undesired host-cell toxicity. This

[#]This paper is dedicated to Dr. Yoshihisa Mizuno on the occasion of his 75th birthday.

stereoselective radical deoxygenation reaction is used for the deoxygenation of a cyanohydrin and a propargyl alcohol to synthesize 2'-C-cyano-2'-deoxy- $1-\beta$ -D-arabinofuranosylcytosine (CNDAC), ⁴ a potent anti-solid-tumor nucleoside, and 2'-deoxy-2'-C-ethynyl nucleosides. ⁵ Thus, these sequential reactions are very useful for the synthesis of methyl, cyano, and ethynyl branched-sugar nucleosides. To examine structure-activity relationships of these branched-sugar nucleosides, we required other alkyl-branched sugar nucleosides. However, when the reagent of the alkyl addition reaction is expanded to other than a methyl carbanion, we have encountered some difficulties in introducing alkyls at the 2'-position. For example, the reaction of the 2'-ketone with EtMgBr or Et_3Al gave undesired secondary alcohols by nucleophilic additions of the β -hydride of the reagents. Since we found that lithium salts of alkynes readily added to the 2'-ketone from the α -face, ⁵⁶ these products can be used as synthons for the synthesis of (2'S)-2'-C-alkyl-2'-deoxyuridines. In this paper, we describe the stereoselective synthetic method for 2'-branched 2'-deoxyuridine derivatives.

We have reported that alkynyl groups were easily introduced at the $2'\alpha$ -position when 1-[3,5-O-[tetraisopropyldisiloxan-1,3-diyl (TIPDS)]-β-D-erythro-2-pentulofuranosyl]]uracil (1) was treated with LiC≡CR. 5a,b Although subsequent introduction of the methoxalyl group at the resulting 2'-tert-alcohol gave 5 in good yields, the radical deoxygenation of 5 with Bu₃SnH in the presence of AIBN gave a complex mixture, ^{5a,b} except that 2'-(trimethylsilyl)ethynyl derivative 5 afforded 6 (R = trimethylsilyl) in 68% yield. This would be due to addition of the Bu₃Sn group to the triple bond without regioselectivity. On the other hand, although catalytic reduction of 2 gave 3 without any problems, introduction of a methoxalyl group or phenoxythiocarbonyl group to the tertalcohols in 3 was troublesome to give 4 even under forced conditions. We encountered such difficulties when the methoxalylation was tried to 4-ethoxy-1-[2-C-methyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]-2(1H)pyrimidinone. However, 1-[2-C-methyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracil derivatives were found to readily reacted with methoxalyl chloride in the presence of a stoichiometric amount of DMAP in CH₂Cl₂. ^{2f} These different reactivities would be interpreted by the Lewis basicity of the carbonyl oxygen at the 2-position. The 4-ethoxy group increases the Lewis basicity of the 2-carbonyl oxygen, and resulting strong intramolecular hydrogen bonding between the 2-carbonyl and the 2'β-hydroxyl group would prevent the acylation reaction. On the other hand, an increase in the bulkiness at the 2'α-substituent in 3 may also interfere with such reactions by steric hindrance. From these consideration, we next tried hydrogenation of 5 to obtain 4, which then would afford the desired 7 by radical deoxygenation.

When **2a** was treated with methoxalyl chloride in the presence of DMAP and Et₃N in CH₂Cl₂, the desired ester **5a** was obtained quantitatively. Catalytic hydrogenation

of 5a in the presence of 10% Pd/C in EtOAc under atmospheric H_2 pressure gave three products on TLC, which were separated on a silica gel column. A less polar product was assigned as the desired 4a (65% yield). In its 1H -NMR spectrum, one methyl proton due to the 2'-methoxalyl ester was observed at 3.86 ppm as a singlet, and phenethyl protons (at 7.14-7.29 ppm and 2.33-2.87 ppm) were also observed. More polar products, which were a mixture of 7a and 8a (15% yield), did not show methyl proton signals, and each

Scheme 1.

1'-proton was a doublet in its ¹H-NMR spectrum. The ratio of **7a** and **8a** was calculated as 1:1.6 from the peak area of each H-6 proton at 7.74 and 7.79 ppm, respectively.

A plausible mechanism of formation of **4a**, **7a**, and **8a** is shown in Scheme 2. Addition of $Pd^{I_1}H_2$ to the triple bond would give the intermediates **A** and **B**, and the palladium atom would be reductively eliminated to afford the intermediate **C**, which is then catalytically reduced to form the desired **4a**. On the other hand, β -elimination of HPd-OCCO₂Me from **B** would give the intermediate **D**, which is then reduced to furnish **7a** and **8a**. Since we have found that catalytic reduction of 2'-deoxy-2'-methylidenecytidine gave both (2'R and S)-2'-deoxy-2'-C-methylcytidine (2'R > 2'S), the ratio of **7a** and **8a** is consistent with this observation. Attempts to use other catalysts such as Rh and Pt derivatives did not improve the yield of **4a**.

Radical deoxygenation of 4a with Bu_3SnH in the presence of AIBN gave a mixture of 7a and 8a in a ratio of 7:1 in 80% yield. Since these products could not be separated at this stage, the mixture was then deprotected using tetrabutylammonium fluoride (TBAF) in THF, followed by separation using a semi-preparative HPLC column to afford 9a and 10a. The structure of these nucleosides were assigned using 1 H-NMR spectroscopy. In the spectra of 9a and 10a, the 1'-protons were detected at 6.23 and 5.91 ppm each as a doublet with $J_{1',2'}$ values of 7.7 and 9.3 Hz, respectively. Previously reported data of the $J_{1',2'}$ values for (2'S)-2'-deoxy-2'-C-methylcytidine hydrochloride and its 2'R epimer were 7.6 and 8.1 Hz, respectively. These values are consistent with each other. NOE experiments of 9a and 10a were also done for unambiguous structural identification. When we irradiated at the 1'-protons of 9a and 10a, increases were observed at the 2'-proton in 8.7 and 0.9%, respectively. Therefore, 9a was assigned as (2'S)-2'-deoxy-2'-C-(2-phenethyl)uridine and 10a as (2'R)-2'-deoxy-2'-C-(2-phenethyl)uridine.

In a similar way, other nucleosides **5b-d** were catalytically reduced to give a mixture of **4**, **7**, and **8** in each series. Major products **4b-d** were subjected to the radical deoxygenation as described for **4a**, giving a mixture of **7** and **8** in each series, which were deprotected and separated by HPLC furnishing **9b-d** and **10b-d**.

As shown in Scheme 3, in the radical deoxygenation reaction of 2'-tert-hydroxyl in \mathbf{E} , the 2'-radical intermediate would be in an equilibrium between \mathbf{F} and \mathbf{G} . The β -face of the sugar moiety of the intermediates would be more hindered than the α -face so that the intermediate \mathbf{G} would react with $\mathbf{Bu}_3\mathbf{SnH}$ more readily than \mathbf{F} to give selectively the 2'S-product \mathbf{I} . In our previous studies, the 2'S-product \mathbf{I} was obtained as a sole product when the 2'-substituent is not bulky, such as methyl, 2a,c,e,f cyano, 4 and 2'-(trimethylsilyl)ethynyl 5a groups. In the present case, the 2'-substituents such as

Scheme 2.

Scheme 3.

phenethyl, butyl, and silyloxybutyl groups are thought to be bulkier than the above substituents. Since the steric repulsion between the 2'-substituent and the uracil moiety in \mathbf{G} would be expected, the intermediate \mathbf{F} would be predominant in the equilibrium. Consequently, the 2'R-products \mathbf{H} from \mathbf{F} are produced in some extent, although significant steric hindrance may exist when the intermediate \mathbf{F} reacts with $\mathrm{Bu}_3\mathrm{SnH}$.

EXPERIMENTAL SECTION

General Methods. Melting points were measured on a Yanagimoto MP-3 micromelting point apparatus and are uncorrected. The ¹H-NMR spectra were recorded on a Jeol JNM-EX270 spectrometer with tetramethylsilane as an internal standard. Chemical shifts are reported in parts per million (δ), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad). All exchangeable protons were detected by addition of D₂O. UV absorption spectra were recorded with a Shimadzu UV-240 spectrophotometer. Mass spectra (MS) were measured on a Jeol JMX-DX303 spectrometer. TLC was done on Merck Kieselgel F254 precoated plates. Silica gel used for column chromatography was YMC gel 60A (70-230 mesh).

1-[2-*O*-Methoxalyl-2-*C*-(2-phenylethynyl)-3,5-*O*-TIPDS-β-D-*arabino*-pento-furanosyl]uracil (5a). Methoxalyl chloride (1.1 mL, 11.6 mmol) was added to a mixture of $2a^{5b}$ (2.0 g, 3.4 mmol) and DMAP (1.4 g, 11.6 mmol) in CH₂Cl₂ (20 mL) at 0 °C under Ar. After being stirred for 4 h at 0 °C, the mixture was washed with H₂O (15 mL x 3). The separated organic phase was dried (Na₂SO₄) and concentrated to dryness *in vacuo*. The residue was purified on a silica gel column (2.8 x 16 cm) with 40% EtOAc in hexane to give 5a (2.3 g, 100% as a white foam): EI-MS m/z 673 (M⁺); ¹H-NMR (CDCl₃) 8.05 (1 H, br s, 3-NH), 7.59 (1 H, d, H-6, $J_{6,5} = 8.1$ Hz), 7.48-7.28 (5 H, m, 2'-Ph), 6.56 (1 H, s, H-1'), 5.72 (1 H, dd, H-5, $J_{5,6} = 8.1$, $J_{5,NH} = 2.2$ Hz), 4.69 (1 H, d, H-3', $J_{3',4'} = 5.9$ Hz), 4.14 (1 H, dd, H-5'a, $J_{a,b} = 11.7$, $J_{a,4'} = 3.3$ Hz), 4.08-4.02 (1 H, ddd, H-4', $J_{4',3'} = 5.9$, $J_{4',5'a} = 3.3$, $J_{4',5'b} = 6.2$ Hz), 3.84 (1 H, dd, H-5'b, $J_{b,4'} = 6.2$, $J_{b,a} = 11.7$ Hz), 3.89 (3 H, s, 2'-OCOCO₂Me), 1.15-1.04 (28 H, m, iPr). Anal. Calcd for $C_{32}H_{44}N_2O_{10}Si_2$: C, 57.12; H, 6.59; N, 4.16. Found: C, 56.98; H, 6.64; N, 4.11.

1-[2-*C***-Ethynyl-2-***O***-methoxalyl-3,5-***O***-TIPDS-β-D-***arabino***-pentofuranosyl]-uracil (5b). Compound 2b**^{5b} (2.0 g, 3.9 mmol) was converted to **5b** (2.4 g, 100% as a white foam) as described for the synthesis of **5a**. Physical data for **5b**: EI-MS *m/z* 597 (M⁺+1); ¹H-NMR (CDCl₃) 8.44 (1 H, br s, 3-NH), 7.53 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 6.50 (1 H, s, H-1'), 5.72 (1 H, d, H-5, $J_{5,6}$ = 8.1 Hz), 4.62 (1 H, d, H-3', $J_{3',4'}$ = 6.2 Hz), 4.10 (1 H, dd, H-5'a, $J_{a,b}$ = 11.4, $J_{a,4'}$ = 2.6 Hz), 4.02-3.90 (1 H, m, H-4'), 3.94 (1 H, dd, H-5'b, $J_{b,4'}$ = 3.3, $J_{b,a}$ = 11.4 Hz), 3.89 (3 H, s, 2'-OCOCO₂Me), 2.89 (1 H, s, 2'-C≡CH),

1.10-1.05 (28 H, m, iPr). Anal. Calcd for $C_{26}H_{40}N_2O_{10}Si_2$: C, 52.33; H, 6.76; N, 4.69. Found: C, 52.22; H, 6.76; N, 4.57.

1-[2-C-Hexynyl-2-O-methoxalyl-3,5-O-TIPDS-β-D-*arabino***-pentofuranosyl]-uracil** (**5c**). Compound **2c**^{5b} (2.0 g, 3.5 mmol) was converted to **5c** (2.1 g, 92% as a white foam) as described for the synthesis of **5a**. Physical data for **5c**: EI-MS m/z 652 (M⁺), 602 (M⁺-iPr); ¹H-NMR (CDCl₃) 8.26 (1 H, br s, 3-NH), 7.55 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 6.44 (1 H, s, H-1'), 5.70 (1 H, dd, H-5, $J_{5,6}$ = 8.1, $J_{5,NH}$ = 1.5 Hz), 4.57 (1 H, d, H-3', $J_{3',4'}$ = 6.2 Hz), 4.21-3.90 (3 H, m, H-4', 5'a,b), 3.88 (3 H, s, 2'-OCOCO₂Me), 2.27 (2 H, t, 2'-C=CCH₂CH₂CH₃), 1.54-1.29 (4 H, m, 2'-C=CCH₂CH₂CH₃), 1.10-1.03 (28 H, m, iPr), 0.89 (3 H, t, 2'-C=CCH₂CH₂CH₃).

1-[2-C-(4-Dimethylthexylsilyloxy-1-butynyl)-2-O-methoxalyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracil (5d). A hexane solution of BuLi (1.56 M, 6.2 mL, 10 mmol) was added dropwise over 50 min to a solution of 4-dimethylthexylsilyloxy-1-butyne (2.1 g, 10 mmol, prepared from 3-butyn-1-ol and dimethylthexyl chloride) in THF (10 mL) at -78 °C under Ar. A solution of 1 (0.97 g, 2 mmol) in THF (5 mL) was added dropwise over 15 min to the above solution at -78 ° C. The whole was stirred for 75 min at -78 °C and was quenched by addition of aqueous 1 M NH₄Cl (20 mL). The mixture was extracted with EtOAc (3 x 25 mL). The separated organic phase was further washed with brine (30 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified on a silica gel column (2.8 x 6 cm) with 30% EtOAc in hexane to give 2d (1.2 g, 88%, as a foam); EI-MS m/z 696 (M⁺); ¹H-NMR (CDCl₃) 8.30 (1 H, br s, 3-NH), 7.87 (1 H, d, H-6, $J_{6.5} = 8.2$ Hz), 6.00 (1 H, s, H-1'), 5.68 (1 H, dd, H-5, $J_{5.6} = 8.2$, $J_{5.NH} = 2.2$ Hz), 4.29-3.93 (4 H, m, H-3', 4', 5'a,b), 3.72 (2 H, t, 2'-C=CC H_2 CH₂OSi, J = 7.1 Hz), 2.87 (1 H, br s, 2'-OH), 2.49 (2 H, t, 2'-C \equiv CCH₂CH₂OSi, J = 7.1 Hz), 1.66-1.56 (1 H, m, 2'-SiCMe₂CHMe₂), 1.10-1.04 (28 H, m, iPr), 0.89-0.84 (12 H, m, Me x 4), 0.10-0.07 (6 H, m, Me x 2). Compound 2d (2.5 g, 3.6 mmol) was converted to 5d (2.7 g, 95% as a white foam) as described for the synthesis of 5a. Physical data for 5d: EI-MS m/z 739 (M⁺-iPr), 693 (M⁺-thexyl); ¹H-NMR (CDCl₂) 9.88 (1 H, br s, 3-NH), 7.54 (1 H, d, H-6, $J_{6.5} = 8.1 \text{ Hz}$), 6.42 (1 H, s, H-1'), 5.70 (1 H, dd, H-5, $J_{5.6} = 8.1$, $J_{5.NH} = 1.5 \text{ Hz}$), 4.57 (1 H, d, H-3', $J_{3',4'} = 6.2$ Hz), 4.10-3.90 (3 H, m, H-4', 5'a,b), 3.87 (3 H, s, 2'-OCOCO₂Me), 3.68 (2 H, t, 2'-C≡CC H_2 CH₂OSi, J = 7.3 Hz), 2.47 (2 H, t, 2'-C≡CCH₂C H_2 OSi, J = 7.3Hz), 1.64-1.54 (1 H, m, 2'-SiCMe₂CHMe₂), 1.41-0.75 (40 H, m, iPr, Me x 4), 0.07 (6 H, s, Me x 2).

Catalytic Reduction of 5a. A suspension of 5a (2 g, 3 mmol) and 10% Pd/C (202 mg) in EtOAc (40 mL) was stirred for 23 h at room temperature under atmospheric pressure of H_2 . Insoluble materials were removed by filtration through a Celite pad,

which was washed well with EtOAc. Combined filtrate and washings were concentrated *in vacuo* and the residue was purified on a silica gel column (2.8 x 20 cm) with 16% EtOAc in hexane to give 1-[2-*O*-methoxalyl-2-*C*-(2-phenethyl)-3,5-*O*-TIPDS-β-D-arabino-pentofuranosyl]-uracil (4**a**, 1.2 g, 60% as a white foam). A further elution of the column with 18% EtOAc in hexane gave a mixture of (2'*R*)-2'-deoxy-2'-*C*-(2-phenethyl)-3',5'-*O*-TIPDS-uridine (8**a**) and (2'*S*)-2'-deoxy-2'-*C*-(2-phenethyl)-3',5'-*O*-TIPDS-uridine (7**a**) (257 mg, 15% as a foam; the ratio of 8**a**:7**a** was 1.6:1). Physical data for 4**a**: EI-MS m/z 633 (M⁺-iPr); ¹H-NMR (CDCl₃) 8.83 (1 H, br s, 3-NH), 7.65 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 7.29-7.14 (5 H, m, 2'-Ph), 6.27 (1 H, s, H-1'), 5.74 (1 H, dd, H-5, $J_{5,6}$ = 8.1, $J_{5,NH}$ = 2.2 Hz), 4.71 (1 H, d, H-3', $J_{3',4'}$ = 6.2 Hz), 4.14 (1 H, dd, H-5'a, $J_{a,b}$ = 12.7, $J_{a,4'}$ = 3.3 Hz), 3.94 (1 H, dd, H-5'b, $J_{b,4'}$ = 5.5, $J_{b,a}$ = 12.7 Hz), 3.89-3.61 (1 H, m, H-4'), 3.86 (3 H, s, 2'-OCOCO₂Me), 2.87-2.33 (4 H, m, 2'-C H_2 C H_2 Ph), 1.08-1.05 (28 H, m, iPr). Anal. Calcd for $C_{32}H_{48}N_2O_{10}Si_2$: C, 56.78; H, 7.15; N, 4.14. Found: C, 56.48; H, 7.11; N, 4.16.

Catalytic Reduction of 5b. As described for the reduction of **5a**, **5b** (2.1 g, 3.6 mmol) was hydrogenated in the presence of 10% Pd/C (200 mg) in EtOAc (40 mL) for 18 h at room temperature to give 1-[2-*C*-ethyl-2-*O*-methoxalyl-3,5-*O*-TIPDS-β-D-*arabino*-pentofuranosyl]uracil (**4b**, 752 mg, 35% as a foam) and a mixture of (2'*R*)-2'-deoxy-2'-*C*-ethyl-3',5'-*O*-TIPDS-uridine (**8b**) and (2'*S*)-2'-deoxy-2'-*C*-ethyl-3',5'-*O*-TIPDS-uridine (**7b**) (701 mg, as a foam, 2:1). Physical data for **5b**: EI-MS m/z 601 (M⁺+1), 557 (M⁺-iPr); ¹H-NMR (CDCl₃) 8.11 (1 H, br s, 3-NH), 7.64 (1 H, d, H-6, $J_{6,5}$ = 8.4 Hz), 6.15 (1 H, s, H-1'), 5.71 (1 H, dd, H-5, $J_{5,6}$ = 8.4, $J_{5,NH}$ = 2.2 Hz), 4.67 (1 H, d, H-3', $J_{3',4'}$ = 5.9 Hz), 4.16-3.81 (3 H, m, H-4', 5'a,b), 3.88 (3 H, s, 2'-OCOCO₂Me), 2.66-2.05 (2 H, m, 2'-CH₂CH₃), 1.08-0.99 (28 H, m, iPr), 0.92 (3 H, t, 2'-CH₂CH₃).

Catalytic Reduction of 5c. As described for the reduction of 5a, 5c (219 mg, 0.34 mmol) was hydrogenated in the presence of 10% Pd/C (26 mg) in EtOAc (10 mL) for 48 h at room temperature to give 1-[2-C-hexyl-2-O-methoxalyl-3,5-O-TIPDS- β -D-arabino-pentofuranosyl]uracil (4c, 118 mg, 54% as foam) and a mixture of (2'R)-2'-deoxy-2'-C-hexyl-3',5'-O-TIPDS-uridine (8c) and (2'S)-2'-deoxy-2'-C-hexyl-3',5'-O-TIPDS-uridine (8c) and (2'S)-2'-deoxy-2'-C-hexyl-3',5'-O-TIPDS-uridine (7c) (68 mg, 37% as a foam, 1.8:1). Physical data for 5c: EI-MS m/z 613 (M⁺-iPr); ¹H-NMR (CDCl₃) 8.13 (1 H, br s, 3-NH), 7.62 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 6.15 (1 H, s, H-1'), 5.70 (1 H, dd, H-5, $J_{5,6}$ = 8.1, $J_{5,NH}$ = 2.2 Hz), 4.65 (1 H, d, H-3', $J_{3',4'}$ = 5.5 Hz), 4.16-4.08 (1 H, m, H-4'), 3.96-3.81 (2 H, m, H-5'a,b), 3.87 (3 H, s, 2'-OCOCO₂Me), 2.51-2.02 (2 H, m, 2'-C H_2 C₅H₁₁), 1.76-0.84 (39 H, m, iPr, 2'-CH₂C₅H₁₁).

Catalytic Reduction of 5d. As described for the reduction of 5a, 5d (2.65 g, 3.4 mmol) was hydrogenated in the presence of 10% Pd/C (260 mg) in EtOAc (45 mL) for 18 h at room temperature to give 1-[2-C-(4-dimethylthexyloxybutyl)-2-O-methoxalyl-3,5-

O-TIPDS-β-D-*arabino*-pentofuranosyl]uracil (**4d**, 910 mg, 34% as a foam) and a mixture of (2'*R*)-2'-deoxy-2'-*C*-(4-dimethylthexyloxybutyl)-3',5'-*O*-TIPDS-uridine (**8d**) and (2'*S*)-2'-deoxy-2'-*C*-(4-dimethylthexyloxybutyl)-3',5'-*O*-TIPDS-uridine (**7d**) (908 mg, 39% as a foam, 1.8:1). Physical data for **5c**: EI-MS m/z 787 (M⁺+1), 771 (M⁺-Me), 743 (M⁺-iPr); ¹H-NMR (CDCl₃) 8.16 (1 H, br s, 3-NH), 7.63 (1 H, d, H-6, $J_{6,5}$ = 8.4 Hz), 6.14 (1 H, s, H-1'), 5.70 (1 H, dd, H-5, $J_{5,6}$ = 8.4, $J_{5,NH}$ = 2.2 Hz), 4.66 (1 H, d, H-3', $J_{3',4'}$ = 5.9 Hz), 4.14-3.89 (3 H, m, H-4', 5'a,b), 3.86 (3 H, s, 2'-OCOCO₂Me), 3.54 (2 H, t, 2'-C≡CCH₂-, J = 6.2 Hz), 2.63-2.01 (2 H, m, 2'-C≡CCH₂CH₂-), 1.88-0.81 (45 H, m, iPr, 2'-CH₂CH₂C₂C₄OSiMe₂C*Me*₂C*HMe*₂), 0.04 (6 H, m, Me x 2).

Radical Deoxygenation of 4a. A mixture of AIBN (21 mg), and Bu₃SnH (0.48 mL, 1.8 mmol) in toluene (20 mL) was added dropwise over 50 min to a solution of **4a** (600 mg, 0.88 mmol) in toluene (30 mL) at 75 °C under Ar. After being stirred for 2.5 h, further amounts of AIBN (12 mg) and Bu₃SnH (0.24 mL, 0.88 mmol) was added and the mixture was continued to heating for 2 h. The solvent was removed *in vacuo* and the residue was purified on a silica gel column (2.8 x 20 cm) with 20% EtOAc in hexane to give a 1:6.9 mixture of **8a** and **7a** (406 mg, 80% as a white foam). Physical data for the mixture of **7a** and **8a**: EI-MS m/z 574 (M⁺); ¹H-NMR (assignment of the major isomer **7a** was described, CDCl₃) 8.58 (1 H, br s, 3-NH), 7.74 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 7.31-7.12 (5 H, m, 2'-Ph), 6.37 (1 H, d, H-1', $J_{1',2'}$ = 7.3 Hz), 5.69 (1 H, dd, H-5, $J_{5,6}$ = 8.1, $J_{5,NH}$ = 2.2 Hz), 4.18-4.11 (2 H, m, H-3', 5'a), 4.03 (1 H, dd, H-5'b, $J_{6,4'}$ = 2.9, $J_{6,a}$ = 13.6 Hz), 3.73 (1 H, ddd, H-4', $J_{4',3'}$ = 8.4, $J_{4',5'b}$ = 1.7 Hz), 2.87-2.66 (2 H, m, 2'-CH₂CH₂Ph), 2.64-2.52 (1 H, m, H-2'), 1.92-1.32 (2 H, m, 2'-CH₂CH₂Ph), 1.10-1.03 (28 H, m, iPr). Anal. Calcd for $C_{29}H_{46}N_2O_6Si_2$: C, 60.59; H, 8.07; N, 4.87. Found: C, 60.68; H, 8.22; N, 4.76.

Radical Deoxygenation of 4b. As described for the deoxygenation of **4a**, **4b** (638 mg, 1.1 mmol) was deoxygenated in the presence of AIBN (15 mg) and Bu₃SnH (0.63 mL, 2.3 mmol) in toluene (30 mL) for 8 h at 70 °C to give a mixture of **8b** and **7b** (372 mg, 70% as a foam, 1:6.4). Physical data for the mixture **7b** and **8b**: EI-MS m/z 499 (M⁺+1), 455 (M⁺-iPr); ¹H-NMR (assignment of the major isomer **7b** was described, CDCl₃) 8.06 (1 H, br s, 3-NH), 7.70 (1 H, d, H-6, $J_{6,5}$ = 8.1 Hz), 6.33 (1 H, d, H-1', $J_{1',2'}$ = 7.3 Hz), 5.69 (1 H, dd, H-5, $J_{5,6}$ = 8.1, $J_{5,NH}$ = 2.2 Hz), 4.15-4.08 (2 H, m, H-3', 5'a), 4.02 (1 H, dd, H-5'b, $J_{b,4'}$ = 2.9, $J_{b,a}$ = 13.2 Hz), 3.75-3.71 (1 H, m, H-4'), 2.53-2.41 (1 H, m, H-2'), 1.67-0.83 (33 H, m, iPr, 2'-Et).

Radical Deoxygenation of 4c. As described for the deoxygenation of 4a, 4c (500 mg, 0.76 mmol) was deoxygenated in the presence of AIBN (15 mg) and Bu_3SnH (0.45 mL, 1.7 mmol) in toluene (20 mL) for 9 h at 70 °C to give a mixture of 8c and 7c (293 mg, 70% as a foam, 1:7.3). Physical data for the mixture of 7c and 8c: EI-MS m/z

511 (M⁺-iPr); ¹H-NMR (assignment of the major isomer **7c** was described, CDCl₃) 8.18 (1 H, br s, 3-NH), 7.70 (1 H, d, H-6, $J_{6,5}=8.1$ Hz), 6.31 (1 H, d, H-1', $J_{1',2'}=7.3$ Hz), 5.69 (1 H, dd, H-5, $J_{5,6}=8.1$, $J_{5,NH}=2.2$ Hz), 4.14-4.07 (2 H, m, H-3', 5'a, $J_{3',4'}=8.4$, $J_{a,b}=13.2$ Hz), 4.02 (1 H, dd, H-5'b, $J_{b,4'}=2.6$, $J_{b,a}=13.2$ Hz), 3.78-3.61 (1 H, m, H-4'), 2.58-2.47 (1 H, m, H-2'), 1.68-0.84 (41 H, m, iPr, 2'-C₆H₁₃).

Radical Deoxygenation of 4d. As described for the deoxygenation of **4a**, **4d** (740 mg, 0.94 mmol) was deoxygenated in the presence of AIBN (15 mg) and Bu₃SnH (0.56 mL, 2.1 mmol) in toluene (35 mL) for 8 h at 70 °C to give a mixture of **8d** and **7d** (355 mg, 55% as a foam, 1:7.7). Physical data for the mixture of **7d** and **8d**: EI-MS m/z 641 (M⁺-iPr); ¹H-NMR (assignment of the major isomer **7d** was described, CDCl₃) 8.18 (1 H, br s, 3-NH), 7.70 (1 H, d, H-6, $J_{6,5}$ = 8.4 Hz), 6.30 (1 H, d, H-1', $J_{1',2'}$ = 7.3 Hz), 5.68 (1 H, dd, H-5, $J_{5,6}$ = 8.4, $J_{5,NH}$ = 2.2 Hz), 4.14-4.07 (2 H, m, H-3', 5'a, $J_{3',4'}$ = 8.4, $J_{a,b}$ = 13.9 Hz), 4.02 (1 H, dd, H-5'b, $J_{b,4'}$ = 2.6, $J_{b,a}$ = 13.9 Hz), 3.72 (1 H, m, H-4'), 3.53-3.51 (2 H, m, 2'-CH₂-), 2.53-2.47 (1 H, m, H-2'), 1.65-0.82 (47 H, m, iPr, 2'-CH₂C₃ H_6 OSiMe₂C Me_2 CH Me_2), 0.06 (6 H, m, Me x 2).

(2'R)-2'-Deoxy-2'-C-(2-phenethyl)uridine (10a) and (2'S)-2-deoxy-2-C-(2phenethyl)uridine (9a). A solution of the above mixture (385 mg, 0.67 mmol) in THF (15 mL) was treated with TBAF (1 M THF solution, 1.4 mL, 1.4 mmol) for 10 min at room temperature. AcOH (80 mL, 1.4 mmol) was added to the mixture and the solvent was removed in vacuo. The residue was purified on a silica gel column (1.8 x 11 cm) with 4% EtOH in CHCl₃ to give a mixture of 9a and 10a (221 mg, 99% as a solid), which was separated by HPLC (YMC D-ODS-5, 2 x 25 cm, 30% MeOH in H₂O, 6.5 mL/min). From the peak corresponding to the retention time at 91 min, 10a (24 mg, 11% as a white foam) was obtained and from the retention time at 99 min, 9a (156 mg, 71% as a white foam) was obtained. Physical data for 10a: EI-MS m/z 332 (M⁺); ¹H-NMR (DMSO- d_6) 11.30 (1 H, br s, 3-NH), 7.79 (1 H, d, H-6, $J_{6.5}$ = 8.1 Hz), 7.35-7.13 (5 H, m, 2'-Ph), 5.91 (1 H, d, H-1', $J_{1'.2'}$ = 9.3 Hz), 5.63 (1 H, d, H-5, $J_{5.6}$ = 8.1 Hz), 5.30 (1 H, d, 3'-OH, $J_{OH,3'} = 5.0$ Hz), 5.03 (1 H, t, 5'-OH), 4.19 (1 H, dd, H-3', $J_{3',OH} = 5.0$, $J_{3',2'} = 4.4 \text{ Hz}$), 3.86 (1 H, br s, H-4'), 3.55 (2 H, t, H-5'), 2.70-2.59 (2 H, m, 2'-CH₂CH₂Ph), 2.25-2.11 (1 H, m, H-2'), 1.92-1.42 (2 H, m, 2'- CH_2CH_2Ph). HREI-MS (M⁺): Calcd for $C_{17}H_{20}N_2O_5$: 332.1372. Found: 332.1371. Physical data for **9a**: EI-MS m/z 332 (M⁺); ¹H-NMR (DMSO- d_6) 11.37 (1 H, br s, 3-NH), 7.89 (1 H, d, H-6, $J_{6.5}$ = 8.2 Hz), 7.35-7.10 (5 H, m, 2'-Ph), 6.23 (1 H, d, H-1', $J_{1',2'} = 7.7$ Hz), 5.61 (1 H, d, H-5, $J_{5,6} = 8.2$ Hz), 5.40 (1 H, d, 3'-OH, $J_{OH,3'} = 5.0$ Hz), 5.09 (1 H, t, 5'-OH), 3.93 (1 H, ddd, H-3', $J_{3',OH} = 6.0$, $J_{3',4'} = J_{3',2'} = 8.2 \text{ Hz}$), 3.77-3.57 (3 H, m, H-4', 5'), 2.64-2.58 (2 H, m, 2'-CH₂CH₂Ph), 2.44-2.32 (1 H, m, H-2', $J_{2',1'} = 7.7$, $J_{2',3'} = 8.2$ Hz), 1.71-1.35 (2 H, m, 2'-C H_2 C H_2 Ph). Anal. Calcd for $C_{17}H_{20}N_2O_5$ 1/10 H_2O : C, 61.11; H, 6.09; N, 8.38. Found: C, 61.05; H, 6.16; N, 8.29.

(2'R)-2'-Deoxy-2'-C-ethyluridine (10b) and (2'S)-2'-deoxy-2'-C-ethyluridine (9b). A mixture of 7b and 8b (357 mg, 0.72 mmol) obtained by radical deoxygenation was deprotected as described for the synthesis of 9a and 10a to give a mixture of 9b and **10b** (196 mg, 100% as a foam) after purification by short column chromatography. These nucleosides were then separated by HPLC (YMC D-ODS-5, 2 x 25 cm, 10% MeOH in H₂O, 9.9 mL/min). From the peak corresponding to the retention time at 26 min, 10b (11 mg, 6% as a white foam) was obtained and from the retention time at 36 min, 9b (124 mg, 63% as a white foam) was obtained. Physical data for 10b: EI-MS m/z 256 (M⁺); ¹H-NMR (DMSO- d_6) 11.29 (1 H, br s, 3-NH), 7.84 (1 H, d, H-6, $J_{6.5} = 8.1$ Hz), 5.87 (1 H, d, H-1', $J_{1',2'}$ = 9.3 Hz), 5.66 (1 H, d, H-5, $J_{5,6}$ = 8.1 Hz), 5.19 (1 H, d, 3'-OH, $J_{\text{OH},3'} = 4.9 \text{ Hz}$), 5.03 (1 H, t, 5'-OH), 4.12 (1 H, dd, H-3', $J_{3',\text{OH}} = 4.9$, $J_{3',2'} = 5.0$ Hz), 3.83 (1 H, dd, H-4', $J_{4',5'a} = 4.3$, $J_{4',5'b} = 3.9$ Hz), 3.53 (2 H, m, H-5'), 2.07-2.01 (1 H, m, H-2'), 1.60-1.17 (2 H, m, 2'- CH_2CH_3), 0.87-0.82 (3 H, m, 2'- CH_2CH_3). HREI-MS (M^+) : Calcd for $C_{11}H_{16}N_2O_5$: 256.1059. Found: 256.1050. Physical data for **9b**: EI-MS m/z 256 (M⁺); ¹H-NMR (DMSO- d_6) 11.31 (1 H, br s, 3-NH), 7.84 (1 H, d, H-6, $J_{6.5} = 8.2$ Hz), 6.18 (1 H, d, H-1', $J_{1'.2'} = 7.7$ Hz), 5.60 (1 H, d, H-5, $J_{5.6} = 8.2$ Hz), 5.30 (1 H, d, 3'-OH), 5.06 (1 H, t, 5'-OH), 3.86 (1 H, ddd, H-3', $J_{3',OH} = 6.1$, $J_{3',4'} = 8.8$, $J_{3',2'} = 7.7$ Hz), 3.90-3.56 (3 H, m, H-4', 5'), 2.30-2.24 (1 H, m, H-2', $J_{2',1'} = 7.7$, $J_{2',3'} = 8.8$ Hz), 1.39-1.11 (2 H, m, 2'-CH₂CH₃), 0.92-0.86 (3 H, m, 2'-CH₂CH₃). Anal. Calcd for C₁₁H₁₆N₂O₅ 1/10 H₂O: C, 51.20; H, 6.33; N, 10.86. Found: C, 51.20; H, 6.34; N, 10.60.

(2'R)-2'-Deoxy-2'-C-hexyluridine (10c) and (2'S)-2'-deoxy-2'-C-hexyluridine (9c). A mixture of 7c and 8c (289 mg, 0.52 mmol) obtained by radical deoxygenation was deprotected as described for the synthesis of 9a and 10a to give a mixture of 9c and 10c (149 mg, 92% as a foam) after purification by short column chromatography. These nucleosides were then separated by HPLC (YMC D-ODS-5, 2 x 25 cm, 40% MeOH in H_2O , 9.9 mL/min). From the peak corresponding to the retention time at 56 min, 10c (10 mg, 7% as a white foam) was obtained and from the retention time at 36 min, 9c (95 mg, 64% as a white foam) was obtained. Physical data for 10c: EI-MS m/z 312 (M^+); 1H -NMR (DMSO- d_6) 11.32 (1 H, br s, 3-NH), 7.89 (1 H, d, H-6, $J_{6,5}$ = 8.2 Hz), 5.86 (1 H, d, H-1', $J_{1',2'}$ = 10.4 Hz), 5.63 (1 H, d, H-5, $J_{5,6}$ = 8.2 Hz), 5.25 (1 H, d, 3'-OH), 5.02 (1 H, t, 5'-OH), 4.12 (1 H, dd, H-3', $J_{3',OH}$ = 4.9, $J_{3',2'}$ = 5.0 Hz), 3.87-3.83 (1 H, m, H-4'), 3.53 (2 H, m, H-5'), 2.35-2.14 (1 H, m, H-2'), 1.37-1.10 (10 H, m, 2'-C₅ H_{10} CH₃), 0.87-0.82 (3 H, m, 2'-C₅ H_{10} CH₃). HREI-MS (M^+): Calcd for $C_{15}H_{24}N_2O_5$: 312.1685. Found: 312.1671. Physical data for 9c: EI-MS m/z 312 (M^+); 1H -NMR (DMSO- d_6) 11.30 (1 H, br s, 3-NH), 7.82 (1 H, d, H-6, $J_{6,5}$ = 8.2 Hz), 6.17 (1 H, d, H-1', $J_{1',2'}$ = 7.7

Hz), 5.60 (1 H, d, H-5, $J_{5,6}$ = 8.2 Hz), 5.28 (1 H, d, 3'-OH), 5.03 (1 H, t, 5'-OH), 3.88-3.80 (1 H, m, H-3'), 3.74-3.55 (3 H, m, H-4', 5'), 2.44-2.24 (1 H, m, H-2', $J_{2',1'}$ = 7.7 Hz), 1.43-1.18 (10 H, m, 2'-C₅ H_{10} CH₃), 0.86-0.81 (3 H, m, 2'-C₅ H_{10} CH₃). Anal. Calcd for C₁₅ H_{24} N₂O₅ 2/5 H₂O: C, 56.38; H, 7.82; N, 8.77. Found: C, 56.37; H, 7.64; N, 8.66.

(2'R)-2'-Deoxy-2'-C-(4-hydroxybutyl)uridine (10d) and (2'S)-2'-deoxy-2'-C-(4-hydroxybutyl)uridine (9d). A mixture of 7d and 8d (352 mg, 0.51 mmol) obtained by radical deoxygenation was deprotected as described for the synthesis of 9a and 10a to give a mixture of **9d** and **10d** (129 mg, 84% as a foam) after purification by short column chromatography. However, we could not separate these compounds from each other even using a C-18 HPLC. Physical data for the mixture of **9d** and **10d**: EI-MS m/z 299 (M^+) ; ¹H-NMR (DMSO- d_6) 11.31 (1 H, br s, 3-NH, **10d**), 11.29 (1 H, br s, 3-NH, **9d**), 7.89 (1 H, d, H-6, $J_{6.5}$ = 8.2 Hz, **10d**), 7.83 (1 H, d, H-6, $J_{6.5}$ = 8.2 Hz, **9d**), 6.17 (1 H, d, H-1', $J_{1',2'} = 7.7$ Hz, **9d**), 5.86 (1 H, d, H-1', $J_{1',2'} = 9.9$ Hz, **10d**), 5.65 (1 H, d, H-5, $J_{5.6} = 9.9$ Hz, **10d**), 5.65 (1 H, d, H-5, $J_{5.6} = 9.9$ Hz, **10d**) 8.2 Hz, **10d**), 5.60 (1 H, d, H-5, $J_{5.6}$ = 8.2 Hz, **9d**), 5.27 (1 H, d, 3'-OH, **9d**), 5.18 (1 H, d, 3'-OH, **10d**), 5.04 (1 H, t, 5'-OH, **9d**), 5.02 (1 H, t, 5'-OH, **10d**), 4.32 (1 H, t, 2'-C₄H₈OH, **10d**), 4.29 (1 H, t, 2'- C_4H_8OH , **9d**), 4.15 (1 H, dd, H-3', $J_{3',OH} = 4.9$, $J_{3',2'} = 5.0$ Hz, **10d**), 3.87-3.83 (1 H, m, H-4', **10d**), 3.85 (1 H, ddd, H-3', $J_{3',OH} = 6.6$, $J_{3',2'} = 8.2$, $J_{3',4'} = 8.2$ Hz, 9d), 3.72 (1 H, ddd, H-5'a, $J_{a,b} = 10.4$, $J_{a,OH} = 4.9$, $J_{a,4'} = 3.7$ Hz, 9d), 3.59 (1 H, ddd, H-5'b, $J_{b,a} = 10.4$, $J_{b,OH} = 4.9$, $J_{b,4'} = 6.6$ Hz, **9d**), 3.53 (2 H, m, H-5', **10d**), 3.53-3.31 (1 H, m, H-4', **9d**), 3.34 (2 H, m, 2'- $C_3H_6CH_2OH$, **10d**), 3.31 (2 H, m, 2'- $C_3H_6CH_2OH$, **9d**), 2.35-2.14 (1 H, m, H-2', **10d**), 2.36-2.30 (1 H, m, H-2', **9d**), 1.41-1.23 (6 H, m, 2'- $C_3H_6CH_2OH$, **9d**), 1.37-1.10 (6 H, m, 2'- $C_3H_6CH_2OH$, **10d**).

REFERENCES

- (1) Part 138: Minakawa, N.; Kojima, N.; Matsuda, A. *Heterocycles* in press.
- (2) (a) Matsuda, A.; Takenuki, K.; Itoh, H.; Sasaki, T.; Ueda, T. *Chem. Pharm. Bull.*, 1987, 35, 3967-3969. (b) Matsuda, A.; Itoh, H.; Takenuki, K.; Sasaki, T.; Ueda, T. *Chem. Pharm. Bull.*, 1988, 36, 945-953. (c) Ueda, T.; Matsuda, A.; Yoshimura, Y.; Takenuki, K. *Nucleosides Nucleotides*, 1989, 8, 743-752. (d) Takenuki, K.; Itoh, H.; Matsuda, A.; Ueda, T. *Chem. Pharm. Bull.*, 1990, 38, 2947-2952. (e) Matsuda, A.; Takenuki, K.; Sasaki, T.; Ueda, T. *J. Med. Chem.*, 1991, 34, 234-239. (f) Awano, H.; Shuto, S.; Baba, M.; Kira, T.; Shigeta, S.; Matsuda, A. *BioMed. Chem. Lett.*, 1994, 4, 367-370. (g) Yoshimura, Y.; Saitoh, K.; Ashida, N.; Sakata, S.; Matsuda, A. *BioMed. Chem. Lett.*, 1994, 4, 721-724.
- (3) Hayakawa, H.; Tanaka, H.; Itoh, N.; Nakajima, M.; Miyasaka, T.; Yamaguchi, K.; Iitaka, Y. *Chem. Pharm. Bull.*, **1987**, *35*, 2605-2607.

- (4) (a) Matsuda, A.; Nakajima, Y.; Azuma, A.; Tanaka, M.; Sasaki, T. J. Med. Chem., 1991, 34, 2917-2919. (b) Azuma, A.; Nakajima, Y.; Nishizono, N.; Minakawa, N.; Suzuki, M.; Hanaoka, K.; Kobayashi, T.; Tanaka, M.; Sasaki, T.; Matsuda, A. J. Med. Chem., 1993, 36, 4183-4189. (c) Tanaka, M.; Matsuda, A.; Terao, T.; Sasaki, T. Cancer Lett., 1992, 64, 67-74. (d) Matsuda, A.; Azuma, A.; Nakajima, Y.; Takenuki, K.; Dan, A.; Iino, T.; Yoshimura, Y.; Minakawa, N.; Tanaka, M.; Sasaki, T. in Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C. K.; Baker, D. C. Eds.; Plenum Publishing Co., New York, 1993, pp 1-22.
- (5) (a) Yoshimura, Y.; Iino, T.; Matsuda, A. Tetrahedron Lett., 1991, 40, 125-128.
 (b) Iino, T.; Yoshimura, Y.; Matsuda, A. Tetrahedron, 1994, 50, 10397-10406.
 (c) Kakefuda, A.; Yoshimura, Y.; Sasaki, T.; Matsuda, A. Tetrahedron, 1994, 50, 10167-10182.
- (6) Matsuda, A. unpublished data.